Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cardiac myosin-binding protein C mutant levels in cardiomyopathic mice.

نویسندگان

  • Nicolas Vignier
  • Saskia Schlossarek
  • Bodvael Fraysse
  • Giulia Mearini
  • Elisabeth Krämer
  • Hervé Pointu
  • Nathalie Mougenot
  • Josiane Guiard
  • Rudolph Reimer
  • Heinrich Hohenberg
  • Ketty Schwartz
  • Muriel Vernet
  • Thomas Eschenhagen
  • Lucie Carrier
چکیده

RATIONALE Mutations in the MYBPC3 gene encoding cardiac myosin-binding protein (cMyBP)-C are frequent causes of hypertrophic cardiomyopathy, but the mechanisms leading from mutations to disease remain elusive. OBJECTIVE The goal of the present study was therefore to gain insights into the mechanisms controlling the expression of MYBPC3 mutations. METHODS AND RESULTS We developed a cMyBP-C knock-in mouse carrying a point mutation. The level of total cMyBP-C mRNAs was 50% and 80% lower in heterozygotes and homozygotes, respectively. Surprisingly, the single G>A transition on the last nucleotide of exon 6 resulted in 3 different mutant mRNAs: missense (exchange of G for A), nonsense (exon skipping, frameshift, and premature stop codon) and deletion/insertion (as nonsense but with additional partial retention of downstream intron, restoring of the reading frame, and almost full-length protein). Inhibition of nonsense-mediated mRNA decay in cultured cardiac myocytes or in vivo with emetine or cycloheximide increased the level of nonsense mRNAs severalfold but not of the other mRNAs. By using sequential protein fractionation and a new antibody directed against novel amino acids produced by the frameshift, we showed that inhibition of the proteasome with epoxomicin via osmotic minipumps increased the level of (near) full-length mutants but not of truncated proteins. Homozygotes exhibited myocyte and left ventricular hypertrophy, reduced fractional shortening, and interstitial fibrosis; heterozygotes had no major phenotype. CONCLUSIONS These data reveal (1) an unanticipated complexity of the expression of a single point mutation in the whole animal and (2) the involvement of both nonsense-mediated mRNA decay and the ubiquitin-proteasome system in lowering the level of mutant proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ubiquitin-proteasome system and nonsense-mediated mRNA decay in hypertrophic cardiomyopathy.

Cardiomyopathies represent an important cause of cardiovascular morbidity and mortality due to heart failure, arrhythmias, and sudden death. Most forms of hypertrophic cardiomyopathy (HCM) are familial with an autosomal-dominant mode of inheritance. Over the last 20 years, the genetic basis of the disease has been largely unravelled. HCM is considered as a sarcomeropathy involving mutations in ...

متن کامل

Nonsense-mediated mRNA decay among coagulation factor genes

Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation fact...

متن کامل

Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms.

AIMS Familial hypertrophic cardiomyopathy (FHC) is frequently caused by cardiac myosin-binding protein C (cMyBP-C) gene mutations, which should result in C-terminal truncated mutants. However, truncated mutants were not detected in myocardial tissue of FHC patients and were rapidly degraded by the ubiquitin-proteasome system (UPS) after gene transfer in cardiac myocytes. Since the diversity and...

متن کامل

Identification and selective degradation of neopeptide-containing truncated mutant proteins in the tumors with high microsatellite instability.

PURPOSE Frameshift mutations in coding mononucleotide repeats (cMNR) are common in tumors with high microsatellite instability (MSI-H). These mutations generate mRNAs containing abnormal coding sequences and premature termination codons (PTC). Normally, mRNAs containing PTCs are degraded by nonsense-mediated mRNA decay (NMD). However, mRNAs containing PTCs located in the last exon are not subje...

متن کامل

Nonsense mutations in hERG cause a decrease in mutant mRNA transcripts by nonsense-mediated mRNA decay in human long-QT syndrome.

BACKGROUND Long-QT syndrome type 2 (LQT2) is caused by mutations in the human ether-a-go-go-related gene (hERG). More than 30% of the LQT2 mutations result in premature termination codons. Degradation of premature termination codon-containing mRNA transcripts by nonsense-mediated mRNA decay is increasingly recognized as a mechanism for reducing mRNA levels in a variety of human diseases. Howeve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 105 3  شماره 

صفحات  -

تاریخ انتشار 2009